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Construction of Variable-Stepsize Multistep Formulas 

By Robert D. Skeel* 

Abstract. A systematic way of extending a general fixed-stepsize multistep formula to a 
minimum storage variable-stepsize formula has been discovered that encompasses fixed-coef- 
ficient (interpolatory), variable-coefficient (variable step), and fixed leading coefficient as 
special cases. In particular, it is shown that the "interpolatory" stepsize changing technique of 
Nordsieck leads to a truly variable-stepsize multistep formula (which has implications for 
local error estimation and formula changing), and it is shown that the " variable-step" stepsize 
changing technique applicable to the Adams and backward-differentiation formulas has a 
reasonable generalization to the general multistep formula. In fact, it is shown how to 
construct a variable-order family of variable-coefficient formulas. Finally, it is observed that 
the first Dahlquist barrier does not apply to adaptable multistep methods if storage rather 
than stepnumber is the key consideration. 

1. Introduction. Multistep methods have been the most successful numerical 
methods for solving initial-value problems in ordinary differential equations. The 
selection of a particular formula is often based on a theoretical analysis of fixed- 
stepsize formulas, and yet implementation normally requires the use of a variable- 
stepsize formula. The question of how to extend a formula to variable stepsize is the 
primary topic of this paper. Existing techniques for varying stepsize are studied, 
revealing interesting relationships and useful generalizations. At the same time, the 
results in Skeel [19] on the equivalence between multivalue methods and multistep 
methods are extended to variable stepsize. There are techniques for varying the 
stepsize other than the use of variable-stepsize formulas, and these are included in 
the survey of Krogh [13]. 

The question of how to extend a formula to variable stepsize has confronted a 
number of researchers. For example, Sand [15, p. 8] states: 

Although there exist natural extensions of the two most common classes of fixed-step 
formulas to variable step-sizes, viz. the Adams LMF's and the BDF's... there exists no 
unique, and in general, no natural, variable-step version of a fixed-step formula. 

The natural extensions referred to here are implemented in such codes as EPISODE 
(Byrne and Hindmarsh [1]) and ODE/DE/STEP, INTRP (Shampine and Gordon 
[17]), and have been named " variable-coefficient" formulas by Jackson and Sacks- 
Davis [11]. In Section 5 of this paper we present a systematic way of extending 
fixed-stepsize formulas to variable-stepsize formulas of which the natural variable- 
coefficient Adams and backward-differentiation formulas are particular cases. These 
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variable-coefficient formulas have attractive properties, that taken together are not 
possessed by other variable-stepsize extensions. They interpolate past data in some 
generalized sense at previous meshpoints, which suggests superior stability properties. 
Also, they require a minimum of storage. 

The popular integrator LSODE (Hindmarsh [10]) does not use variable-coefficient 
formulas but rather "fixed-step interpolation" formulas based on an idea due to 
Nordsieck [14] and popularized by Gear [8]. This technique for varying the stepsize 
is applicable to general fixed-stepsize formulas. The precise nature of this type of 
variable-stepsize method has been somewhat of a mystery, but if there is a prevailing 
view, then it is most clearly expressed by Jackson and Sacks-Davis [11]: 

If, in a fixed coefficient implementation, the stepsize is changed at every step, then the 
corrector equation... may be expressed in the form 

n ii-2 

(2.18) aOoy, + E ?l Yti_j + hn?n + hnE AI'Jf.l-j = 0, 
J=1 J=1 

provided, as well, that the order k is always kept greater than two. Thus the solution at tn 
may depend on all of the previously computed values. Consequently, eq. (2.18) is not a "local 
formula" as are eqs. (2.6), (2.13), and (2.15). This gives one an intuitive understanding for the 
cause of the numerical instability of fixed coefficient formulas with respect to step-size 
changes. 

These comments are specific to the backward-differentiation formulas; presumably 
they should apply also to other linear multistep formulas if the n - 2 in the limit of 
summation is changed to n. In Section 5 of this paper we show that the situation is 
not so bad, that fixed-coefficient formulas are true variable-stepsize formulas, 
meaning that the upper summation limits in (2.18) can be replaced by the stepnum- 
ber k and the formula coefficients depend on only the last k - 2 stepsize ratios. We 
expect that this information could be very important for the construction of local 
error estimates having a sound theoretical basis. There is little reason to believe that 
the local error estimators used in current implementations are asymptotically cor- 
rect, even (for nonstiff problems) with slowly varying stepsize. 

The variable-coefficient and fixed-coefficient extensions are related even more 
closely than has already been suggested. They are both specializations of a more 
general technique for variable-stepsize extension discussed in Section 2. This generic 
technique for extending formulas to variable stepsize is characterized by the fact that 
it creates methods having minimal storage requirements. 

A fixed-stepsize linear k-step formula, k > 2, for the ODE y'(t) = f(t, y(t)) 
determines approximations Yn and yn to the solution and its derivative at a point t, 
from the two equations 

(1.la) aoyYn + ayl 1 
yn 

?akyflk =h(/30y + 2lYn-1 + +?kYn-k), 

(1.1b) Yn' = f (tn, Yn), 
assuming that approximations yn-j, yn-j are available at previous meshpoints 
tn -= tn -jh, j = 1(1)k. It is not necessary for our purposes that Eq. (1.lb) be 
satisfied exactly. We assume that ao 0 0 and that the polynomials 

p(g):= a 0tk ? a,g k-l + ... ? ?ak and G(():= po3k ? fjfk-l ? + 
Pk 

have no common factors, which is equivalent to the nonexistence of an "equivalent" 
formula of lower stepnumber. From the latter assumption it follows that a?k k /3 > 

0. Assume the formula is of order > q where k < q < 2k - 1, which for linear 
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multistep methods is equivalent to requiring that the formula be exact if y(t) is a 
polynomial of degree < q. The cases q = k - 1 and q = 2k are excluded because 
they require special treatment. The order of the (fixed-stepsize) formula may exceed 
q, but we shall seek a variable-stepsize extension of order q only. 

For nonstiff problems, stability considerations (strong stability) constrain the 
order to be < k + 1. The archetypal nonstiff formula is the Adams-Moulton 
formula (AMF) 

Yn -Yn-1 =h ( 0Yn' + Al Yn-1 + + /kYn-k ) 

which is of order k + 1. For stiff problems, stability considerations (A(a)-stability) 
constrain the order to be < k (except for the trapezoidal rule), and the archetypal 
stiff formula is the backward-differentiation formula (BDF) 

a0yn ? alyn1 ?r + ?akYn-k hyn, 

which is of order k. Both sets of formulas are attractive because of their simple 
derivation, but it is difficult to believe that they are the best for all special-purpose 
and general-purpose codes. We note that other formulas have been derived by many 
authors and that some of these have been used to solve practical problems, for 
example, the K-method of Kregel and Heimerl [12] used at the U.S. Army Ballistic 
Research Laboratory. 

For various practical reasons (error control, efficiency, starting, solution of 
nonlinear systems) we want to use variable stepsize hn = tn - tn-1. For a given 
fixed-stepsize formula we want a variable-stepsize extension 

k k 

a ,jnYn-j = fOnhnYn ? E hjnhn-j+lYn-j 
j=O j=1 

There are a number of restrictions that are clearly desirable. The coefficients ajn, #in 
should depend only on tn, tn-1,. ..., tnk, and, in fact, they ought to be rational 
functions of the stepsize ratios rn, rn - 1,..., rn-k+2. Here, rn:= hnl/hn1. We will not 
require that the coefficients exist for all possible combinations of stepsize ratios, 
although this is desirable. It goes without saying that the variable-stepsize coeffi- 
cients should be equal to the fixed-stepsize coefficients when the stepsize ratios are 
all one. The normalization 

aOn =ao 

will be assumed. Any other normalization may not always be applicable; for 
example, the more natural normalization E,/ = 1 sometimes fails for the f variant 
of the fixed leading coefficient formulas of Jackson and Sacks-Davis [11]. Requiring 
that the formula be exact for polynomials of degree at most q imposes another 
q + 1 linear conditions on the coefficients. However, we need yet another 2k - q 
conditions, which is the main topic of this paper. 

Note. Our use of hn_j+ instead of hn as a coefficient for yn-;, j > 2, is unusual 
but for our purposes more convenient. 

For the k-step AMF we need k - 1 auxiliary conditions and the most popular 
choice (variable coefficient) is 

a2n = a3n akn =0. 
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For the k-step BDF we need k additional conditions and a popular choice (variable 
coefficient again) is 

/1n = 12n fkn = 

One motivation for these conditions, emphasized in the paper of Dill and Gear [7], is 
to keep down the number of saved values (more specifically, the number of values 
that must be saved between steps). For this variable-stepsize extension of AMF it is 
clear that only the k + 1 values yn yn Yn-kk are needed to determine yn 
and yn, and for the BDF only k values are needed. However, this property is not 
unique to these choices of coefficients. It is shown in Skeel [19] that any fixed-step- 
size k-step method requires only k values to be saved in order to advance the 
solution (and this is without reevaluating the right-hand side f(t, y)). This also 
follows from the equivalence between linear multistep and one-leg methods dis- 
covered by Dahlquist [3], as well as the modifier polynomial formalism of Wallace 
and Gupta [21]. In practice we want to use a predictor of order q at least, so that we 
get a good initial guess for the nonlinear equation solver, so that the Milne device 
can be used to estimate local errors, and so that interpolation to off-mesh points can 
be performed with an error of only O(hq+ 1). Thus, we should save q + 1 values. 

The same trick used to economize on storage for fixed-stepsize methods also 
works for variable-stepsize methods. Let us illustrate this with the 2-step Adams- 
Bashforth formula by choosing the 2k - q = 2 auxiliary conditions plus the one 
normalization condition to be 

IOn = 0, Iln = 2 /92n = -rn/2. 

Requiring that the formula be exact for second-degree polynomials yields 

aOn =2/(1 + rn), aln = rn- 2, &2n = rn(1 - rJ)/(1 + rn)- 

If we are given the three values 

Yn-1, Yn-1, sn,-2 = -a2nYn-2 + f2nhn-lYn-2, 

we can determine yn, yn, S o- 1 from 

sfl0 = -a2,n+lYn-l + ?2,n+lh nYn-l, 
a0,y ? a = 111hy1 ? go, aOn Yn + lnYn-1 l, nYn - 1 n -2~ 

Yn f (tn, Yn) 

There is a disturbing feature of this algorithm, that the reader may have noticed. It 
concerns the computation of sn?1 at time tn and the fact that this requires knowing 
the value of tn + P For adaptive methods, the value of tn+1 is determined, by trial 
and error, only after completely advancing to tn. 

The failure of our algorithm in this example is probably typical. For a second 
example, consider the constant-p variable-stepsize extension proposed by Gear and 
Watanabe [9], in which we require ajn = aj, 0 < j < k, so that the variable-stepsize 
formula inherits the 0-stability properties of the fixed-stepsize formula. (This actu- 
ally constitutes only k - 1 auxiliary conditions because a normalization is included 
and the formula is already exact for constant polynomials.) The result of applying 
the constant-p variable-stepsize extension to the third-order formula with 

- 3 
( == -2, (2 = 9 
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has 

6r3+ 9r2 + 1 3r3 + 9r2-3r-1 3r3 + 3r + 2 
12r2(r + 1) n 12r2 , 12(r + 1) 

where r = r,. 
Therefore, in our search for auxiliary conditions we impose one more restriction: 

The 2 k - q auxiliary conditions should be such that only q + 1 values need be saved without 
knowing future meshpoints. 

Such methods we call adaptable (q + 1)-value methods. At the beginning of 
Section 2 we give generic auxiliary conditions that are sufficient and seem to be 
necessary in order that the storage be minimal without predetermined meshpoints. 

It is convenient to introduce m := (q + 1) - k and to use m rather than q in our 
discussion. Thus we are seeking k - m + 1 auxiliary conditions for a (k + m)-value 
method of order k + m - 1. The assumption k < q < 2k - 1 implies 1 < m < k. 
Typically, m = 1 for a stiff formula, and m = 2 for a nonstiff formula. 

An auxiliary condition proposed by Jackson and Sacks-Davis [11] is to fix 

fOn = ,8 Such fixed leading coefficient variable-stepsize formulas have certain 
practical advantages for stiff ODEs, and these formulas are considered in Section 6. 
On the other hand, there is some suggestion, namely, the equivalence of fixed 
leading coefficient to fixed-coefficient for the second-order BDF, that variable 
leading coefficient formulas have better stability properties. 

If the meshpoints were known in advance, we could express the unique variable- 
stepsize k-step formula of order 2k in such a way that only k values need to be 
saved. However, if the new meshpoint tn is not known in advance, we cannot expect 
the order of a q-value method to exceed q, because there are only q + 1 items of 
information available to determine the solution at tn: the k saved values plus the 
differential equation at tn . (Consider, in particular, the problem y' = f(t).) More- 
over, the qth order Adams-Moulton formula can be expressed as an adaptable 
q-value method, and thus there exist strongly 0-stable q-value methods of optimal 
order. Therefore, the first Dahlquist [2] barrier does not exist for adaptable 
variable-stepsize formulas, if we consider the number of saved values rather than the 
stepnumber of the formula. In Section 3 we construct an adaptable qth-order 
q-value variable-stepsize extension for any qth-order fixed-stepsize formula with 
stepnumber < q. 

In the fixed-stepsize case, Skeel [19] shows how to formulate a (k + m)-value 
method using a polynomial pn(t) that interpolates k + m values as follows: 

Pn(tn-j) Yn_j1 j = 0(1)m - 1, 

Pn(tn-j) yn_, j = 0(1)m - 1, 

E (k-j+iPn(tn-m-i) + h/lk-j+iPn(tn-m-i)) 
i=0 

=E~ ( k-j+iYn-m-i + hf3k-j+iYn-Mmi) j = 0(1)k - m - 1. 
i=o 

In advancing from pn 1(t) to pn (t) we obtain one new item of information, namely, 
the derivative value at tn . (This is obviously the case for the ODE y' = f (t).) Hence, 
the polynomials p - InI ( t) and pi(t) interpolate nearly the same data and so we 
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expect the difference to be especially simple. In fact, 

(1.2) Pn(t) = Pnl(t) + - t h ) 
a0 

where the modifier polynomial A(x) is determined by the formula through the 
conditions 

(1.3a) A'(-j) =O, 
Po 

= ()m- 1, 

(1 .3b) A (-j) = a?l 0-, 

E {f?ak-j+iA(-m -i) + /3kj+?lA(-m - i)} = 0, 
(1.3c) i=O 

j = O()k - m - 1. 

It is shown (Skeel [19, Corollary to Theorem 2.1]) that these conditions uniquely 
determine A (x). As an example, the k-step BDF has 

A(x) x( k) 

The modifier polynomial was discovered in special cases by Descloux [6] and Byrne 
and Hindmarsh [1] and in general by Wallace and Gupta [21] and Skeel [19]. 

Equation (1.2) is an alternative way of expressing a linear multistep formula and 
has a number of advantages. First, a kth degree modifier polynomial A(x) is a 
convenient parameterization of a linear k-step formula because the number of free 
coefficients after a normalization (such as A'(O) = 1 or A(k)(0) = 1 which corre- 
sponds to a0 = 1 or , = 1, respectively) exactly equals the k degrees of freedom 
in a normalized, linear multistep formula of order > k and stepnumber < k. 
Second, the minimum storage implementation is obvious from (1.2). The coefficients 
are easily calculated from A(x); for example, a divided-difference implementation 
would use divided differences of A((t - tn)/h). Third, there is a built-in predictor. 
Fourth, there is a built-in interpolation to off-mesh points. However, there is a 
disadvantage to the form (1.2), and that is that it seems to be less convenient for the 
analysis of stability and accuracy. 

The modifier polynomial A(x) is used in Section 5 to give the auxiliary conditions 
for the variable-coefficient extension. There is another more direct way of construct- 
ing the variable-coefficient formula, which we give here: 

For the values y and y j, j = O(l)m - 1, 

(1.4) Sn-m E a?k-j+iYn-m-i + Pk-j+jhn-m- +1lYn-m-i} (1.4) 
n-n 

1{-k?ynn 

i= O(1)k- 
we determine k + m coefficients ajn, fjn, Yin, such that the formula 

rn-i k 

0Yn - fOnihnYn = E { -anYn-j + Pin n-j+lYn- + E YjnSn-mm 
j=l j=m 

is exact for polynomials of degree < k + m - 1. 
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The auxiliary conditions for the fixed-coefficient case are given in Section 7 in 
terms of the modifier polynomial A(x). But again there is another, more direct way 
of describing this method. Assume we are given 

Yn-l,-j "'Y(tn-I - ihn-1), Yn - ,-j A tn-l -jhn-1) 

for j = 0(1)k - 1. Let pn_1(t) be the unique polynomial of degree at most k + m 
- 1 which interpolates (as before) the following equally spaced data: 

f {-akj?,yn1 n1, h j = O(1)k - m - 1. E k-j+iYn-1,-m-i + n-1Pk-j+iYn-1,-m-i} i=01k-m-1 
. =o 

Then, evaluate pn-l(t) and its derivative at the k points from tn__ backwards with 
uniform spacing hn, 

Yn,-j = Pn-(tn -ihn), Yn,-j = Pn-1(tn -ihn), 
j = I(I)k, and apply the fixed-stepsize formula (1.1) to those values in order to 
obtain yn and Yn- 

As previously stated, a fixed-coefficient method can be expressed as a true 
variable-stepsize formula, and as an example, the fixed-coefficient second-order 
BDF has the form 

3 3 + rn 2r 
Yn 2 Yn-+ ? Yn-2 = hy ? 1 - hy' 

We have been considering fixed-formula methods only. For variable-formula 
methods the idea of the number of saved values still applies, although this number 
might have to be greater because of the possibility of changing formulas. Clearly, the 
various formulas ought to be related in such a way that the number of saved values 
is low. More specifically, if we want a family of variable-coefficient formulas 
indexed by k = m(I)K, such that the kth formula has stepnumber k and order 
k + m - 1, then we should begin by choosing the Kth formula to be whatever we 
like, and for the kth formula, k = m(I)K - 1, we should use the unique formula of 
order k + m - 1 that relates the values 

yn-1, Yn-js j = O(1)m - 1, Si-m, j=0(1)k-m, 
where the latter are defined using the coefficients of the Kth formula. This is further 
discussed in Section 4 in greater generality. 

Sections 2 through 7 appear in the supplements section at the end of this issue. 
We conclude this section by offering some opinions about the various ideas 

sparked by Nordsieck [14] and pursued by a number of authors, especially Gear [8]. 
These ideas have had a profound practical impact but have otherwise been resisted 
by most researchers in numerical ODEs. As shown in this and previous papers, all 
interesting multivalue methods can be expressed as genuine multistep methods, 
although for blended methods this can be complicated [20]. The multistep form 
seems to be best for the analysis of errors and of stability. Nonetheless both the 
"number of saved values" and the "modifier polynomial" seem to be useful ideas 
worth retaining. 

There is significant experimental and theoretical evidence in the case of Adams 
and backward-differentiation formulas that variable-coefficient methods are stable 
for a greater variety of stepsize sequences than are the fixed-coefficient methods. 
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Stability is a very important consideration, more so than the complexity of coeffi- 
cient calculation (or the representation of saved values), and for this reason the 
fixed-coefficient schemes should be abandoned in favor of either variable-coefficient 
or fixed leading coefficient schemes, which, in this paper, have been defined for 
general linear multistep formulas. Even these may have inadequate stability proper- 
ties compared to the second-order 2-step one-leg formulas of Dahlquist, Liniger, and 
Nevanlinna [5]. 
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